Year 13 Further Maths – Further Pure 10ption

Торіс		Ref	Ex
Inequalities	 Solving Inequalities Solve inequalities involving modulus signs 	FP7.1	4C
Conic Sections 2	 Ellipses Know and use the Cartesian equation for the ellipse Know and use the parametric equations for the ellipse, including a general point on the curve Understand the focus-directrix property of the ellipse – i.e. it is the locus of points equidistant from the focus and directrix. 	FP4.1 FP4.2 FP4.3	3A 3C
	 Hyperbolas Know and use the Cartesian equation for a standard hyperbola Know and use the parametric equations for a standard hyperbola, including a general point on the curve Understand the focus-directrix property of the hyperbola – i.e. it is the locus of points equidistant from the focus and directrix. 	FP4.1 FP4.2 FP4.3	3B
	 Eccentricity Understand the eccentricity as the ratio of the distance from a fixed point (focus) and a fixed line (directrix) for a conic section. Be able to calculate the eccentricity Know the value to expect for the eccentricity of an ellipse, parabola or hyperbola. 	FP4.2	3C
	 Tangents and Normals Find the equations of tangents and normals to ellipses and hyperbolas. Note: for AS level, the gradient function dy/dx will be provided for a parabola. 	FP4.3	3D 3E
	 Loci Use the focus-directrix property of an ellipse or hyperbola to derive its general equation from a given point (focus) and straight line (directrix) 	FP4.4	3F
Numerical Methods	 Simpson's rule Use Simpson's rule to find an approximation for a given definite integral 	FP6.2	8D
Reducible Differential Equations	 First Order DEs Use a given substitution to transform a first order DE equation into one that can be solved 	FP3.2	9A
	 Second Order DEs Use a given substitution to transform a second order DE equation into one that can be solved 	FP3.2	9B
	Modelling with DEsSolve modelling problems involving reducible DEs	FP3.2	9C

Year 13 Further Maths – Further Pure 10ption

Торіс		Ref	Ex
Taylor series	 Derive Taylor series Derive Taylor series for functions Understand that the Taylor series f(x + a) allows you to approximate the value of f(x) close to x = a. 	FP2.1	6A
	 Use Taylor series Use series expansions to evaluate limits Use the Taylor series method to find a series solution to a Differential Equation 	FP2.2 FP3.1	6B 6C
Further calculus	 Leibnitz's theorem Apply Leibnitz's theorem for differentiating products Use it to find an expression for the nth derivative of a product of functions 	FP2.3	7A
	 L'Hospital's rule Understand the use of derivatives to evaluate limits of indeterminate forms. 	FP2.4	7B
	Weierstrass substitution • Use tangent half-angle substitutions to find definite and indefinite integrals using Weierstrass substitution $t = tan \frac{x}{2}$	FP2.5	7C
Vectors	 Straight lines Write the vector equation of a straight line in the form (r - a) x b = 0 Find the direction ratios and direction cosines of a line 	FP5.3	1D
	 3D geometry problems Use vectors involving points, lines and planes to solve 3D geometry problems 	FP5.3	1E