Year 12 Further Maths – Further Mechanics 1 Teacher

Торіс		Ref	Ex		
Momentum and impulse	 Momentum and impulse understand the definitions, derivation, and units of momentum and impulse; understand what happens to the momentum of a sphere as a result of a collision; be able to use the principle of conservation of momentum applied to direct collisions in 1-dimension 	1.1			
	Momentum and Impulse Assessment				
Work, Energy and Power	 Work and kinetic energy understand the derivation, units and definitions of work and energy; be able to define kinetic energy (KE); understand that work done on a body moving in a horizontal plane is the change in kinetic energy. 	2.1			
	 Potential energy, work-energy principle, conservation of mechanical energy, problem solving understand the concept of gravitational potential energy (GPE); be able to include GPE when applying the work-energy principle; know the conditions for conservation of mechanical energy; be able to solve problems involving work and energy 	2.1			
	 Power understand that power in watts is the rate of doing work; be able to calculate the power (P) of a vehicle with a tractive (driving) force F, moving with velocity v; be able to use the formula P = Fv in problem solving. 	2.1			
Work, Energy and Power Assessment					

Year 12 Further Maths – Further Mechanics 1 Teacher

Successive direct impacts of spheres and/or a sphere3.2with a smooth plane surface••Spheres may be modelled as particles	Elastic Collisions in One Dimension	 Direct impact of elastic spheres, Newton's law of restitution and loss of kinetic energy due to impact be able to express the 'compressibility', 'bounciness' or 'elasticity' of an object by a value called the coefficient of restitution (e); know that 0 ≤ e ≤ 1 [and that e = 0 means inelastic and e =1 means perfectly elastic]; know and be able to use Newton's (experimental) law of restitution for direct impacts of elastic spheres; be able to calculate the change in kinetic energy due to an impact. 	3.1	
		with a smooth plane surface	3.2	