Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Algebraic Manipulation, Indices and Surds	Algebraic manipulation - Multiply and divide integer powers. - Expand single brackets and collect like terms. - Expand the product of two or three expressions. - Factorise linear, quadratic and cubic expressions.	P2.1	$\begin{aligned} & \text { P1A } \\ & \text { P1B } \\ & \text { P1C } \end{aligned}$
	Indices - Understand and be able to use the laws of indices - Evaluate expressions including negative, fractional and zero indices - Understand that fractional indices correspond to roots - Powers of negative bases	P2.1	P1D
	Surds - Be able to use and manipulate surds - Multiplication and division - Difference of squares - Rationalise denominators of the forms $a \sqrt{ } b$ and ($a+/-\sqrt{ } b$).	P2.2	$\begin{aligned} & \text { P1E } \\ & \text { P1F } \end{aligned}$
Further Algebra	Algebraic Division - Cancel factors in algebraic fractions - Divide a polynomial by a linear expression	P2.6	$\begin{aligned} & \text { P7A } \\ & \text { P7B } \end{aligned}$
	Factor Theorem - Know and be able to apply the factor theorem - Use the factor theorem to fully factorise a cubic expression	P2.6	P7C
Binomial Expansion	Proof - Understand and be able to use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion. - Use the following methods of proof: - Proof by deduction - Proof by exhaustion - Disproof by counter example	P1.1	$\begin{aligned} & \text { P7D } \\ & \text { P7E } \end{aligned}$
	- Understand and be able to use the binomial expansion of $(a+b x)^{n}$ for positive integer n - Use Pascal's triangle or factorial notation for expansions - Find an individual coefficient in a binomial expansion - Use a binomial expansion to make approximations	P4.1	$\begin{aligned} & \text { P8A } \\ & \text { P8B } \\ & \text { P8C } \\ & \text { P8D } \end{aligned}$
Assessment 1			

Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Probability	- Identify mutually exclusive events and use the addition rule. - Identify independent events and use the multiplication rule. - Make use of Venn diagrams and tree diagrams when solving probability problems. - Link to discrete and continuous distributions probability represents area under a curve for continuous distribution.	A3. 1	$\begin{aligned} & \text { P5A } \\ & \text { P5B } \\ & \text { P5C } \\ & \text { P5D } \end{aligned}$
Statistical Distributions	Probability Distributions - Understand and be able to use simple, discrete probability distributions (NO mean or variance) - Know and be able to identify the discrete uniform distribution - Calculate probabilities using the binomial distribution - Use a calculator to find individual or cumulative binomial probabilities.	A4. 1	$\begin{aligned} & \hline \text { P6A } \\ & \text { P6B } \\ & \text { P6C } \end{aligned}$
Differentiation	Definition and differentiating polynomials - Understand and be able to use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=\mathrm{f}(x)$ at a general point (x, y) - Interpret $\mathrm{dy} / \mathrm{dx}$ as the rate of change of y with respect to x . - Differentiation from first principles for small positive integer powers of x - Sketch the gradient function for a given curve - Differentiate x^{n}, for rational values of n , and related constant multiples, sums and differences. Including those that require algebraic manipulation first. - Understand and use the second derivative as the rate of change of gradient.	$\begin{aligned} & \text { P7.1 } \\ & \text { P7.2 } \end{aligned}$	$\begin{gathered} \text { P12A } \\ \text { P12B } \\ \text { P12 } \\ \text { C } \\ \text { P12 } \\ \text { D } \\ \text { P12E } \end{gathered}$
	Applications of differentiation - Use the derivative to solve problems involving gradients, tangents and normal. - Identify increasing and decreasing functions - Find stationary points of functions and determine their nature.	P7.3	$\begin{gathered} \text { P12F } \\ \text { P12 } \\ \text { G } \\ \text { P12 } \\ \text { H } \\ \text { P121 } \\ \text { P12J } \end{gathered}$

Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Trigonometry	Trigonometric Ratios and Graphs - Use the definitions of sine, cosine and tangent for all arguments - Sketch the graphs of the sine, cosine and tangent functions - Sketch simple transformations of these graphs	P5.2	P9E P9F P9G
	Trigonometric Identities and Equations - Know and use the relationships: $\tan x=\frac{\sin x}{\cos x} \text { and } \sin ^{2} x+\cos ^{2} x=1$ - Solve trigonometric equations within a given interval including one of the form: - $\sin \left(x+70^{\circ}\right)=0.5$ - $3+5 \cos 2 x=1$ - $6 \cos ^{2} x+\sin x-5=0$ - Find multiple solutions in a given range using CAST diagram or graphs	$\begin{aligned} & \text { P5.3 } \\ & \text { P5.4 } \end{aligned}$	P10A P10B P10C P10D P10E P10F
	Sine rule, cosine rules and $1 / 2 A B \sin C$ - Be able to use the sine and cosine rules to find missing sides and angles - Find the area of a triangle using $1 / 2 A B \sin C$	P5.1	$\begin{aligned} & \text { P9A } \\ & \text { P9B } \\ & \text { P9C } \\ & \text { P9D } \end{aligned}$
Statistical Sampling	Sampling Terminology - Understand and be able to use the terms 'population' and 'sample' - Use samples to make informal inferences about the population. - Describe advantages and disadvantages of sampling compared to census.	A1.1	A1A
	Sampling Techniques - Understand and be able to use sampling techniques - Simple random sampling - Stratified sampling - Systematic sampling - Quota sampling - Opportunity (or convenience) sampling - Describe advantages/disadvantages of techniques - Select or critique sampling techniques in the context of solving a statistical problem; - Understand that different samples can lead to different conclusions about the population.	A1.1	A1A

Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Data Presentation and Interpretation	Measures of location and variation - Calculate measures of central tendency (location) mean, median and mode; - Calculate measures of variation - standard deviation, variance, range and interpercentile range - Use linear interpolation to calculate percentiles from grouped data. - Be able to interpret and draw inferences from summary statistics.	A2.3	A2A A2B A2C A2D A2E
	Coding Understand and use coding for both mean and standard deviation calculations.	A2.3	A2F
Data Presentation and Interpretation	Single Variable Data - Interpret diagrams for single variable data: - Histograms - Frequency polygons - Cumulative frequency diagrams - Box and Whisker plots (including outliers)	A2. 1	$\begin{aligned} & \text { A3A } \\ & \text { A3B } \\ & \text { A3C } \\ & \text { A3D } \end{aligned}$
	Bivariate Data - Interpret scatter diagrams and regression lines for bivariate data - Recognise the explanatory (independent) and response (dependent) variables - Be able to make predictions using the regression line and understand its limitations (danger of extrapolation) - Identify and interpret correlation, using terms 'positive', 'negative', 'zero', 'strong' and 'weak'. Understand that correlation does not imply causation	A2. 2	$\begin{aligned} & \text { A4A } \\ & \text { A4B } \end{aligned}$
	Outliers and Cleaning Data - Recognise and interpret possible outliers in data sets and statistical diagrams. (Any rule to be used will be specified in the question.) - Select or critique data presentation techniques in the context of a statistical problem. Clean data, including dealing with missing data, errors and outliers.	A2.4	A3A
Assessment 3			

Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex	
Hypothesis testing	Principles and language of hypothesis testing - Understand the language and concept of hypothesis testing, developed through a binomial model - Understand that a sample is used to make an inference about a population - Understand the terms: - Null hypothesis H_{0} - Alternative hypothesis H_{1} - Critical value - Critical region - Significance level - one-tail test - two-tail test - Acceptance region - p-value	A5. 1 A5. 2	$\begin{aligned} & \text { P7A } \\ & \text { P7B } \end{aligned}$	
	Conducting hypothesis testing - Find critical values of a binomial distribution using tables or a calculator - Appreciate that the significance level is the probability of incorrectly rejecting the null hypothesis - Be able to calculate the critical region and the p-value - Carry out a one-tailed or two-tailed test for the proportion of the binomial distribution and interpret the results in context.	$\begin{aligned} & \text { A5.1 } \\ & \text { A5.2 } \end{aligned}$	$\begin{aligned} & \text { P7C } \\ & \text { P7D } \end{aligned}$	
Year 12 Pure Maths Mock				
Functions	The modulus function \|	 - Understand and use the modulus function $\mathrm{y}=\|\mathrm{f}(\mathrm{x})\|$. - Sketch graphs of modulus functions of the form $y=\|f(x)\|$ or $y=f(\|x\|)$. - Use graphs to solve equations and inequalities involving the modulus function.	P2.7	$\begin{aligned} & \text { P2A } \\ & \text { P2E } \end{aligned}$
	Function definition - Understand mappings and functions Use domain and range to define a function.	P2.8	P2B	
	Composite Functions - Combine two or more functions to make a composite function. Find the domain and range for composite functions.	P2.8	P2C	
	Inverse Functions - Know how to find the inverse of a function both algebraically and graphically. State the domain and range for an inverse function.	P2.8	P2D	
	Combining Transformations - Apply a combination of two (or more) transformations to the same curve. Transform the modulus function \|	.	P2.9	$\begin{aligned} & \hline \text { P2F } \\ & \text { P2G } \end{aligned}$

Year 12 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Start Year 13 Maths Course			
Algebraic manipulation	Using Partial Fractions - Review of simplifying algebraic fractions - Use and apply models that involve quadratic functions, expressing as partial fractions	P4.1	$\begin{gathered} 1 \mathrm{~B}, \mathrm{C} \\ \mathrm{D}, \mathrm{E}, \\ \mathrm{~F} \end{gathered}$
Sequences and Series	Arithmetic Sequences - Find the nth term of an arithmetic sequence. - Understand the difference between a sequence and a series. - Prove and use the formula for the sum of the first n terms of an arithmetic series.	P4.4	$\begin{aligned} & \text { P3A } \\ & \text { P3B } \end{aligned}$
	Geometric Sequences - Find the nth term of a geometric sequence. - Prove and use the formula for the sum of a finite geometric series. Prove and use the formula for the sum to infinity of a convergent geometric series.	P4.5	$\begin{aligned} & \text { P3C } \\ & \text { P3D } \\ & \text { P3E } \end{aligned}$
	Sigma notation Use and understand sigma \sum notation to describe series	P4.3	P3F
	Recurrence Relations - Generate sequences from recurrence relations of the form $u_{n+1}=F\left(u_{n}\right)$. Be able to recognise increasing, decreasing and periodic sequences written as a recurrence relation.	P4.2	$\begin{aligned} & \text { P3G } \\ & \text { P3H } \end{aligned}$
	Modelling with Series Model real-life situations with sequences and series.	P4.6	P31

